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Abstract

A class of high-order compact (HOC) exponential finite difference (FD) methods is proposed for solving one- and
two-dimensional steady-state convection–diffusion problems. The newly proposed HOC exponential FD schemes have
nonoscillation property and yield high accuracy approximation solution as well as are suitable for convection-dominated
problems. The O(h4) compact exponential FD schemes developed for the one-dimensional (1D) problems produce diago-
nally dominant tri-diagonal system of equations which can be solved by applying the tridiagonal Thomas algorithm. For
the two-dimensional (2D) problems, O(h4 + k4) compact exponential FD schemes are formulated on the nine-point 2D
stencil and the line iterative approach with alternating direction implicit (ADI) procedure enables us to deal with diago-
nally dominant tridiagonal matrix equations which can be solved by application of the one-dimensional tridiagonal Tho-
mas algorithm with a considerable saving in computing time. To validate the present HOC exponential FD methods, three
linear and nonlinear problems, mostly with boundary or internal layers where sharp gradients may appear due to high
Peclet or Reynolds numbers, are numerically solved. Comparisons are made between analytical solutions and numerical
results for the currently proposed HOC exponential FD methods and some previously published HOC methods. The pres-
ent HOC exponential FD methods produce excellent results for all test problems. It is shown that, besides including the
excellent performances in computational accuracy, efficiency and stability, the present method has the advantage of better
scale resolution. The method developed in this article is easy to implement and has been applied to obtain the numerical
solutions of the lid driven cavity flow problem governed by the 2D incompressible Navier–Stokes equations using the
stream function-vorticity formulation.
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1. Introduction

Numerical prediction of the convection–diffusion equation plays a very important role in computational
fluid dynamics (CFD) to simulate flow problems. Therefore, accurate, stable and efficient difference represen-
tations of the convection–diffusion equations are of vital importance. It has been discovered that although the
CD approximation is second-order accurate, classical iterative methods for solving the resulting linear system
do not converge when the cell Reynolds number is greater than a certain value. The UD scheme is uncondi-
tional stable, but is only first-order accurate, and the resulting solution exhibits the effect of artificial viscosity
[28,30]. In recent years, high order compact (HOC) FD methods have generated renewed interest and a variety
of specialized techniques have been developed [3–6,9,15,17,19,20,22–24,27,32–34,37]. For the 1D convection–
diffusion equations, Dekema and Schultz [6] developed higher-order methods using the Taylor series expan-
sion. For 2D convection–diffusion equations, Gupta et al. [17] employed series expansions to the differential
equation to develop a fourth-order nine-point compact FD formula. Similar HOC FD schemes have been
developed and applied to the convection–diffusion equations and the incompressible Navier–Stokes equations
by several authors [4,5,9,15,22,32,33]. Dennis and Hudson [9] developed the same scheme as in Ref. [17] using
another approach. Recently, Kolesnikov and Baker [20] developed and tested a new approach to designing
high order, defined to exceed a third accurate method.

All of the above HOC schemes mentioned may be classified as high-order compact polynomial FD
schemes; i.e., the influence coefficients of the FD formulation are connected to polynomial functions of the
coefficients of the differential operator. The algebraic manipulations for deriving these HOC polynomial
FD schemes are complicated, interested readers are referred to Refs. [17,22,32,33]. The 4OC polynomial
FD schemes have good numerical stability and yield higher accuracy approximations [9,17]. For convec-
tion-dominated problems or large cell Reynolds number Rec case, however, analyses and numerical tests given
by some researchers [3,37,40] have showed that HOC polynomial FD schemes may yield nonphysical spurious
behavior because no maximum principle is guaranteed and/or no upwind effect is preserved. Thus, the existing
HOC polynomial FD schemes are not suitable for particular physical problems, such as abrupt boundary
layer in convection-dominated problems and shock-like discontinuities caused by local nonlinearities, unless
a very fine mesh is used [19,20]. This dilemma can be resolved by utilizing nonuniform mesh and local mesh
refinement strategies [4,5,12,13,27,30]. Unfortunately, the boundary layer location or the singularity region
must be known in this case.

An alternative approach to HOC polynomial FD methods is the class of HOC exponential FD methods,
i.e., the coefficients of the FD formulation are connected to exponential functions of the coefficients of the
differential operator. The exponential FD scheme has the noteworthy features that upwind effect is inherently
considered in the exponential functions and coefficient matrix is diagonally dominant unconditionally, which
makes it very suitable for singular perturbation problems characterized by boundary and/or transition layers
where the gradients of the solution are large. The exponential FD scheme was first introduced by Allen and
Southwell [1] to solve the second-order partial differential equation governing the transport of vorticity. The
methods for the one-dimensional steady, linear convection–diffusion equation have been studied in [2,10,21].
MacKinnon and Johnson [24] derived an 4OC exponential FD scheme for the 2D convection–diffusion equa-
tion with constant convection coefficients. Recently, Radhakrishna Pillai [27] developed 4OC exponential FD
methods for solving 1D and 2D convection–diffusion equations with constant and variable convection coef-
ficients on compact stencils. However, the coefficient matrix of schemes may fail to be diagonally dominant for
the convection-dominated problems with variable convection coefficients, since the influence coefficients
involve both exponential and polynomial functions in the FD approximations. In [3], a perturbational 4OC
exponential FD scheme with diagonally dominant coefficient matrix has been developed for the convec-
tion–diffusion equations based on a second-order exponential FD scheme proposed by Chen et al. [3]. How-
ever, it is easily found that the influence of source term in the FD equation established in [3] becomes less and
less as the cell Reynolds number Rec increased, and eventually for very large Rec value, this influence becomes
negligible. The drawbacks of the exponential FD methods proposed in [3,27] will be illustrated in detail in the
numerical examples.

This paper is primarily aimed at developing 4OC exponential FD schemes with diagonally dominant coef-
ficient matrix for solving the steady convection–diffusion equations. The newly proposed HOC exponential
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FD schemes have nonoscillation property and yield high accuracy approximation solution as well as are
suitable for convection-dominated problems in presence or absence of source term. To obtain the HOC
exponential FD scheme for the 1D convection–diffusion equation with constant convection coefficient,
the idea of modified differential equation analysis of Warming and Hyett [36] is employed to determine
the computational stencil coefficients appropriate for the desired order of accuracy in our study. The con-
struction of the 4OC exponential FD scheme for the 2D problem with constant convection coefficients are
based on the 4OC exponential FD scheme proposed for the 1D one in this paper. For the variable convec-
tion coefficient problems, 4OC compact exponential FD schemes are achieved based on the 4OC exponen-
tial FD schemes proposed for the constant convection coefficient problems and a practical technique, named
reminder term modification approach [23]. The currently developed HOC exponential FD schemes are
applied to three linear and nonlinear problems for which numerical and analytical results are available,
mostly with boundary or internal layers where sharp gradients may appear due to high Peclet or Reynolds
numbers. As the basis of a discretization method for the incompressible, 2D, steady-state flow problems, the
4OC exponential FD formulation proposed for the 2D convection–diffusion equation is applied to the
stream function-vorticity formulation of the Navier–Stokes equations and the lid driven cavity flow problem
is solved.

In the next section, we first present a three-point O(h4) compact exponential FD scheme for the 1D convec-
tion–diffusion equation with constant convection coefficient; then we develop a three-point 4OC exponential
FD scheme of the 1D problem with variable convection coefficient. In Section 3, O(h4 + k4) compact exponen-
tial FD schemes on a 3 · 3 stencil are proposed for the 2D convection–diffusion equations with constant and
variable convection coefficients. Applications of the newly proposed 4OC formulation to the Navier–Stokes
equations in the stream function-vorticity formulation follow in Section 4. To validate the feasibility of the
proposed HOC exponential FD methods, numerical experiments for one- and two-dimensional convection–
diffusion equations and the numerical solutions of the lid driven cavity flow problem are performed in Section
5. Finally, Section 6 is devoted to some concluding remarks.
2. High-order compact exponential FD methods: 1D case

Consider the steady one-dimensional nonhomogeneous convection–diffusion model problem
�auxx þ cðxÞux ¼ f ðxÞ x 2 ½0; 1� ð1Þ

where a is the constant conductivity, c is the convective velocity which might be a constant or vary spatially, f

is a sufficiently smooth function of x, and u may represent heat, vorticity, etc. This equation is consistent with
singular-perturbation problem as a is a small parameter.

To set up the difference equation of (1) divide [0,1] into N equal parts with xi = ih, h = xi+1 � xi, ui = u(xi),
ci = c(xi), fi = f(xi) and i 2 {0, 1,2, . . . ,N}. For a sufficiently smooth solution u, derivatives in (1) at interior
grid points xi, can be defined using Taylor’s theorem as
uxi ¼ Dhui �
X1
n¼1

h2n

ð2nþ 1Þ! D2nþ1
x ui ð2Þ

uxxi ¼ D2
hui �

X1
n¼1

2h2n

ð2nþ 2Þ! D2nþ2
x ui ð3Þ
where Dhui = (ui+1 � ui�1)/(2h) and D2
hui ¼ ðuiþ1 � 2ui þ ui�1Þ=h2 are the central difference approximations for

the first and second derivatives and Dn
x is the nth-order exact derivative operator at any interior x.

In this section, we will develop several HOC exponential FD schemes for solving the convection–diffusion
equation (1). To formulate these schemes, we first introduce an O(h2) compact exponential FD method for Eq.
(1). In the subdomain [xi�1,xi+1], let us rewrite Eq. (1) as
�ae
cix
a e�

cix
a ux

� �
x
¼ fi
namely,
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�a e�
cix
a ux

� �
x
¼ fie

�cix
a ð4Þ
in which, we have assumed that c = ci and f = fi in the subdomain [xi�1,xi+1]. Integration of Eq. (4) over a
spaced interval from xi�1

2
to xiþ1

2
gives
ci e�
cih
2a ðuxÞiþ1

2
� e

cih
2a ðuxÞi�1

2

h i
¼ e�

cih
2a � e

cih
2a

� �
fi ð5Þ
Using the central difference to approximate uxi, we get
uxi ¼
uiþ1

2
� ui�1

2

h
þOðh2Þ
and thus, we have
�aiD2
hui þ ciDhui ¼ fi ð6Þ
where
ai ¼
cih
2

coth cih
2a

� �
; ci 6¼ 0

a; ci ¼ 0

(
ð7Þ
Eq. (6) is called as a second-order exponential FD scheme for the convective diffusion model problem (1),
which is nodally exact and gives rise to a diagonally dominant tri-diagonal system of equations. In addition,
scheme (6) provides the exact solution for the 1D convection–diffusion equation with constant convection
coefficient in the absence of a source term. Scheme (6) and its some variants have been proposed via other
approaches [1,27–29].

It is easily found that the second-order exponential FD scheme (6) applied to Eq. (1) is equivalent to the
standard second-order central FD formula applied to the following equation:
� ch
2

coth
ch
2a

� �
uxx þ cux ¼ f ð8Þ
Eq. (8) also shows that, when the second-order exponential FD scheme (6) is used, an artificial diffusion coef-
ficient a½ch

2a cothðch
2aÞ � 1� is perturbed to Eq. (1).

2.1. O(h4) compact exponential FD method: constant coefficient case

Consider the FD scheme for Eq. (1) with constant convection coefficient at a grid point xi as
�aD2
hui þ cDhui ¼ c0fi þ c1fxi þ c2fxxi ð9Þ
where
a ¼
ch
2

coth ch
2a

� �
; c 6¼ 0

a; c ¼ 0

�
ð10Þ
D2
h and Dh are as defined previously. In order to determine the parameters c0, c1 and c2, let us rewrite Eq. (10)

as
�aD2
hui þ cDhui ¼ c0ð�auxx þ cuxÞi þ c1ð�auxx þ cuxÞxi þ c2ð�auxx þ cuxÞxxi ð11Þ
Straightforwardly calculating the right-hand side of Eq. (11), and substituting (2) and (3) into (11) and rear-
ranging it, we obtain the following modified differential equation corresponding to the scheme (11):
�auxx þ cux ¼ fi þ ðc0 � 1Þcuxi þ ð�c0aþ c1cþ aÞuxxi þ �c1aþ c2c� ch2

6

� �
D3

xui

þ h2

12
a� c2a

� �
D4

xui þOðh4Þ ð12Þ
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Letting
ðc0 � 1Þc ¼ 0; �c0aþ c1cþ a ¼ 0; �c1aþ c2c� ch2

6
¼ 0 ð13Þ
and solving the above resulting equations, we get the parameters
c0 ¼ 1; c1 ¼
a�a

c ; c 6¼ 0;

0; c ¼ 0;

�
c2 ¼

aða�aÞ
c2 þ h2

6
; c 6¼ 0

h2

12
; c ¼ 0

(
ð14Þ
This scheme gives rise to a diagonally dominant tri-diagonal system of equations. The Taylor-series truncation
errors analysis show that Eq. (9) with (14) for solving the model problem (1) is an O(h4) compact FD scheme.
Notice that second-order central differences of the derivatives of f may be used in Eq. (9) while still maintain-
ing overall O(h4) accuracy on 3-point stencil. In Section 5, we shall present the numerical results that verify this
conclusion.

It is interesting to note that the 4OC exponential FD scheme (9) for the model Eq. (1) is actually the stan-
dard second-order central FD scheme for the following ordinary differential equation
�auxx þ cux ¼ f þ c1fx þ c2fxx ð15Þ

We see that Eq. (15) is a perturbation of Eq. (1) in the sense that an artificial diffusion coefficient

a½ch
2a cothðch

2aÞ � 1� and an artificial source term c1fx + c2fxx have been added.

2.2. O(h4) compact exponential FD method: variable coefficient case

Consider the FD scheme for Eq. (1) with variable convection coefficient at a grid point xi as
�aiD2
hui þ ciDhui ¼ fi þ c1fxi þ c2fxxi ð16Þ
in which
ai ¼
cih
2

coth cih
2a

� �
; ci 6¼ 0

a; ci ¼ 0

(

c1 ¼
a�ai

ci
; ci 6¼ 0;

0; ci ¼ 0;

�
c2 ¼

aða�aiÞ
c2

i
þ h2

6
; ci 6¼ 0

h2

12
; ci ¼ 0

8<
:

ð17Þ
Using the Taylor series expansions and the original differential equation (1), we derive the following mod-
ified differential equation corresponding to the scheme (16):
�auxx þ cux � 2c2cxuxx � ðc1cx þ c2cxxÞux þOðh4Þ ¼ f ð18Þ

where c1 and c2 are given by Eq. (17) and c1 ¼ � cih2

12a þOðh4Þ, c2 ¼ h2

12
þOðh4Þ.

Eq. (18) shows that the local truncation error of Eq. (16) is only of O(h2). In order to obtain an O(h4)
scheme, adding the term 2c2cxuxx + (c1cx + c2cxx)ux to the left-hand side of Eq. (1) and neglecting the terms
of fourth order, we get
�Af uxx þ Cf ux ¼ f ð19Þ

where Af = a � 2c2cx and Cf = c + c1cx + c2cxx with c1 and c2 given by Eq. (17) or Af ¼ a� h2cx

6
þOðh4Þ and

Cf ¼ c� h2

12
ðccx

a � cxxÞ þOðh4Þ. Actually, to derive HOC FD approximations for convection and diffusion
problems, this technique have been used by several authors [19,27,23]. This technique was called as remainder
term modification approach in [23].

Eqs. (19) and (1) are the same in the form. Being similar to scheme (9), an 4OC exponential FD scheme for
the convective diffusion model problem (1) is given by
�KiD2
hui þ CfiDhui ¼ fi þ C1fxi þ C2fxxi ð20Þ
where
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Ki ¼
Cfih

2
coth

Cfih
2Afi

� �
; Cfi 6¼ 0

Afi; Cfi ¼ 0

(

C1 ¼
Afi�Ki

Cfi
; Cfi 6¼ 0;

0; Cfi ¼ 0;

(
C2 ¼

AfiðAfi�KiÞ
C2

fi
þ h2

6
; Cfi 6¼ 0

h2

12
; Cfi ¼ 0

8<
:

ð21Þ
and Af and Cf are as defined earlier.
This scheme produces a diagonally dominant tri-diagonal system of equations. The Taylor-series trunca-

tion errors analysis show that Eq. (20) with (21) is an 4OC exponential FD scheme for the convection–diffu-
sion Eq. (1). Notice that central differences of second-order accuracy for the derivatives of c and f may be used
in equation (20) with (21) while still maintaining overall fourth-order accuracy on 3-point stencil.

It is easily verified that the 4OC exponential FD scheme (20) applied to Eq. (1) is equivalent to the second-
order central difference scheme applied to the following equation
�Kuxx þ Cf ux ¼ f þ C1fx þ C2fxx ð22Þ

Thus when the O(h4) FD scheme (20) is used, Eq. (1) is artificially perturbed to the above equation. An arti-

ficial diffusion coefficient a Cf h
2a cothðCf h

2Af
Þ � 1

h i
, an artificial convection coefficient c1cx + c2cxx and an artificial

source term C1fx + C2fxx have been added.
2.3. O(h4) compact exponential FD schemes: monotonicity and comparison

The 4OC exponential FD scheme (20) may be written as
Cfi

h e
Cfih

2Afi � e
�

Cfih

2Afi

� � �e
Cfih

2Afi ui�1 þ 2 cosh
Cfih
2Afi

� �
ui � e

�
Cfih

2Afi uiþ1

� �
¼ F i ð23Þ
where Fi = fi + C1fxi + C2fxxi.
A distinguishing feature of the 4OC exponential FD scheme (23) is its coefficient matrix A = (aij) is a real,

irreducible diagonally dominant matrix with aij 6 0 for i 6¼ j and aii > 0. Referring to Appendix 1, we conclude
that A is an M-matrix, and A�1 > 0 holds. Under this condition, the solutions computed from the M-matrix
equation are unconditionally monotonic. By means of the M-matrix theory [25], there is a potential advantage
in using the currently proposed scheme to resolve any possible sharp gradient in the flow. In Section 5, we shall
present the numerical results that verify this inference.

For the convection diffusion model problem (1), the perturbational 4OC exponential FD scheme of Chen
et al. [3] can also be written as
2

h2
cosh

cpih
2a

� �
ui ¼

1

h2
e�

cpih

2a uiþ1 þ e
cpih

2a ui�1

� �
þ fpi=a ð24Þ
where
cp ¼ cþ h2

12

ccx

a
þ cxx

� �

fp ¼ f þ h2

12
2

c
2a

� �2

þ 2
cx

2a

� �
f � 2

c
2a

fx þ fxx

	 
 ð25Þ
Scheme (23) may also be written as
�apiD2
hui þ cpiDhui ¼

cpih

e
cpih

2a � e�
cpih

2a

fpi=a ð26Þ
in which
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api ¼
cpih

2
coth

cpih
2a

� �
; cpi 6¼ 0

a; cpi ¼ 0

(
ð27Þ
Referring to Appendix 1, we conclude easily from Eq. (24) that the coefficient matrix A is an M-matrix, and
A�1 > 0 holds, thus, the solutions computed from the M-matrix equation are unconditionally monotonic.
Unfortunately, it is clearly seen from (26) that the influence of the source term becomes less and less as the
cell Reynolds number Rec = cpih increased, and eventually for very large Rec value, its influence becomes neg-
ligible. This indicates the compact exponential FD scheme (24) is not applicable for the convection-dominated
problems with nonzero source term on coarse mesh. The drawback of the 4OC exponential FD schemes pro-
posed in [3] will be illustrated in detail in the numerical examples.

Using the 4OC exponential FD method of Radhakrishna Pillai [27] to Eq. (1) with variable convection coef-
ficients, yields
�AD2
hui þ CDhui ¼ fi þ c1Dhfi þ c2D2

hfi ð28Þ
where
A ¼ ai �
h2

6
Dhci; C ¼ ci �

h2

12

ci

a
Dhci � D2

hci

� �
ð29Þ
and ai, c1 and c2 are given by Eq. (17). Here, it must be pointed out that Eq. (28) is the same as the scheme
proposed in [27]. Eq. (28) can also be written as
2A

h2
ui ¼

A

h2
þ C

2h

� �
ui�1 þ

A

h2
� C

2h

� �
uiþ1 þ fi þ c1Dhfi þ c2D2

hfi ð30Þ
Obviously, the influence coefficients of Eq. (28) involve both exponential and polynomial functions. For the
convection diffusion problems with constant convection coefficients, it is easy to find that the coefficients of
matrix of Eq. (30) is M-matrix. For the convection diffusion problems with variable convection coefficients,
however, the discretization equation (30) may not obey the positive coefficient rule [26]. Consequently, unsta-
ble numerical results or nonphysical spurious oscillation may occur on coarse mesh. We shall verify this issue
through numerical results in Section 5.
3. Extension to two-dimensions case

In this section we will extend the above 4OC exponential FD formulation and method for the 1D convec-
tion diffusion problems to 2D ones. Consider the two-dimensional nonhomogeneous convective diffusion
model problem
�auxx � buyy þ cðx; yÞux þ dðx; yÞuy ¼ f ðx; yÞ ð31Þ

where a and b are constants and c and d vary spatially, and f is a sufficiently smooth function with respect to x

and y. This equation is consistent with the 2D steady-state Navier–Stokes equations for constant viscosity. Let
the step-length in the x-direction be h = 1/n and in the y-direction be k = 1/m, where n and m are the numbers
of subdivisions in the x- and y-directions respectively.

Following [34], the 2D convection–diffusion equation (31) can be separated into the following two
equations:
�auxx þ cðx; yÞux ¼ f1ðx; yÞ
f1 ¼ f ðx; yÞ þ buyy � dðx; yÞuy

�
ð32Þ
and
�buyy þ dðx; yÞuy ¼ f2ðx; yÞ
f2 ¼ f ðx; yÞ þ auxx � cðx; yÞux

�
ð33Þ



Z.F. Tian, S.Q. Dai / Journal of Computational Physics 220 (2007) 952–974 959
Applying (6) to the 1D-like Eqs. (32) and (33) respectively, we have
�ahD2
huij þ cijDhuij ¼ f1ij ð34Þ
and
�akD2
kuij þ dijDkuij ¼ f2ij ð35Þ
where Dhuij = (ui+1,j � ui�1,j)/(2h), D2
huij ¼ ðuiþ1;j � 2ui;j þ ui�1;jÞ=h2, Dkuij = (ui,j+1 � ui,j+1)/(2k) and D2

kuij ¼
ðui;jþ1 � 2ui;j þ ui;j�1Þ=k2 are the central difference approximations for the first and second derivatives with
respect to x and y respectively.

Adding (34) to (35) and using (31) yields
�ahD2
huij � akD2

kuij þ cijDhuij þ dijDkuij ¼ fij ð36Þ

where
ah ¼
cijh

2
coth

cijh
2a

� �
; cij 6¼ 0;

a; cij ¼ 0;

(
ak ¼

dijk
2

coth
dijk
2b

� �
; dij 6¼ 0

b; dij ¼ 0

(
ð37Þ
Eq. (36) with (37) is an O(h2 + k2) compact exponential FD approximation on 2D five-point stencil for the 2D
convection–diffusion equations at the point (xi,yj).

It is easily verified that the O(h2 + k2) scheme (36) applied to Eq. (31) is equivalent to the standard second-
order central FD formulae applied to the following partial differential equation at the point (xi,yj):
�ahuxx � akuyy þ cux þ duy ¼ f ð38Þ

Eq. (38) also shows that, when the compact FD scheme (36) is used, artificial diffusion coefficients

a ch
2a cothðch

2aÞ � 1
� �

and b dk
2b cothðdk

2bÞ � 1
� �

are perturbed to Eq. (31).

3.1. O(h4 + k4) compact exponential FD method: constant coefficients case

In this subsection, we use the above approach to derive an O(h4 + k4) compact exponential FD scheme for
the model problem (31) with constant coefficients. Scheme (9), established for the 1D constant coefficient case,
can be extended to the 2D case.

Applying (9) to one-dimensional-like Eqs. (32) and (33) respectively, we obtain
� ahD2
huij þ cDhuij ¼ F 1ij ð39Þ

� akD2
kuij þ dDkuij ¼ F 2ij ð40Þ
where F1ij = f1ij + c1f1xij + c2f1xxij and F2ij = f2ij + d1f2yij + d2f2yyij.

Straightforwardly calculating f1x, f1xx, f1y and f2yy and substituting into the right-hand sides of (39) and
(40), and then combining (39) and (40) and rearranging, we obtain an O(h4 + k4) compact exponential FD
approximation to (31) at a mesh point (xi,yj) as
�ahD2
h � akD2

k þ cDh þ dDk þ EDhDk þ GD2
kDh þ HD2

hDk þ KD2
kD2

h

� �
uij ¼ F ij ð41Þ
where
ah ¼
ch
2

coth ch
2a

� �
; c 6¼ 0;

a; c ¼ 0;

�
ak ¼

dk
2

coth dk
2b

� �
; d 6¼ 0

b; d ¼ 0

�

c1 ¼
a�ah

c ; c 6¼ 0;

0; c ¼ 0;

�
c2 ¼

aða�ahÞ
c2 þ h2

6
; c 6¼ 0

h2

12
; c ¼ 0

(

d1 ¼
b�ak

d ; d 6¼ 0;

0; d ¼ 0;

(
d2 ¼

bðb�akÞ
d2 þ k2

6
; d 6¼ 0

k2

12
; d ¼ 0

(

E ¼ c1d þ d1c; G ¼ d2c� c1b; H ¼ c2d � d1a; K ¼ �c2b� d2a

F ¼ f þ c1fx þ c2fxx þ d1fy þ d2fyy

ð42Þ
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Eq. (41) with (42) is a nine-point compact exponential FD scheme of O(h4 + k4) for the 2D convection–dif-
fusion model problem (31) with constant convection coefficients. The accuracy order of scheme (41) shall be
shown by the numerical results in Section 5.

It is easily found that the O(h4 + k4) compact exponential FD scheme (41) applied to Eq. (31) is equivalent
to the standard second-order central FD formulae to the following partial differential equation at the point
(xi,yj):
�ahuxx � akuyy þ cux þ duy ¼ F � Euxy � Guxyy � Huxxy � Kuxxyy ð43Þ

We see that, when the O(h4 + k4) compact exponential FD scheme (41) is used, Eq. (31) is artificially perturbed
to the above Eq. (43). Artificial diffusion coefficients a ch

2a cothðch
2aÞ � 1

� �
, b dk

2b cothðdk
2bÞ � 1

� �
and an artificial

source term c1fx + c2fxx + d1fy + d2fyy � Euxy � Guxyy � Huxxy � Kuxxyy have been added. Here, ah, ak, c1,
c2, d1, d2, E, G, H, K and F are given by (42).
3.2. O(h4 + k4) compact exponential FD method: variable coefficients case

In this subsection, we will introduce an O(h4 + k4) compact exponential FD approach for the model
problem (31) with variable convection coefficients. Consider the FD scheme for Eq. (31) at a mesh point (xi,yj)
as
��ahD2
h � �akD2

k þ cijDh þ dijDk þ �EDhDk þ �GD2
kDh þ �HD2

hDk þ �KD2
kD2

h

� �
uij ¼ �F ij ð44Þ
where
�ah ¼
cijh

2
coth

cijh
2a

� �
; cij 6¼ 0;

a; cij ¼ 0;

(
�ak ¼

dijk
2

coth
dijk
2b

� �
; dij 6¼ 0

b; dij ¼ 0

(

�c1 ¼
a��ah

cij
; cij 6¼ 0;

0; cij ¼ 0;

(
�c2 ¼

aða��ahÞ
c2

ij
þ h2

6
; cij 6¼ 0

h2

12
; cij ¼ 0

8<
:

�d1 ¼
b��ak

dij
; dij 6¼ 0;

0; dij ¼ 0;

(
�d2 ¼

bðb��akÞ
d2

ij
þ k2

6
; dij 6¼ 0

k2

12
; dij ¼ 0

8<
:

�E ¼ �c1dij þ �d1cij; �G ¼ �d2cij � �c1b; �H ¼ �c2dij � �d1a; �K ¼ ��c2b� �d2a
�F ¼ f þ �c1fx þ �c2fxx þ �d1fy þ �d2fyy

ð45Þ
Using the Taylor series expansions and the original differential equation (31), we obtain the following mod-
ified partial differential equation corresponding to the scheme (44):
� auxx � buyy þ cðx; yÞux þ dðx; yÞuy � ð2�c2dx þ 2�d2cyÞuxy � ð2�c2cxÞuxx � ð2�d2dyÞuyy

� ð�c1cx þ �c2cxx þ �d1cy þ �d2cyyÞux � ð�c1dx þ �c2dxx þ �d1dy þ �d2dyyÞuy ¼ f þOðh4 þ h2k2 þ k4Þ ð46Þ
in which �c1, �c2, �d1 and �d2 are given by (45), and �c1 ¼ � cijh2

12a þOðh4Þ; �c2 ¼ h2

12
þOðh4Þ; �d1 ¼ � dijk2

12b þOðk4Þ and
�d2 ¼ k2

12
þOðk4Þ:

Eq. (46) shows that the local truncation error of Eq. (44) is only of O(h2 + k2). To obtain an O(h4 + k4)
compact exponential FD scheme, adding the term ð2�c2dxþ2�d2cyÞuxyþð2�c2cxÞuxxþð2�d2dyÞuyyþð�c1cxþ�c2cxxþ
�d1cy þ �d2cyyÞux þ ð�c1dx þ �c2dxx þ �d1dy þ �d2dyyÞuy to the left-hand side of Eq. (31), we have
�Af uxx � Bf uyy þ Cf ux þ Df uy ¼ F p ð47Þ

where
Af ¼ a� 2�c2cx; Cf ¼ cþ �c1cx þ �c2cxx þ �d1cy þ �d2cyy

Bf ¼ b� 2�d2dy ; Df ¼ d þ �c1dx þ �c2dxx þ �d1dy þ �d2dyy

F p ¼ f � ð2�c2dx þ 2�d2cyÞuxy

ð48Þ
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Eqs. (47) and (31) are the same in the form. Being similar to scheme (41), an O(h4 + k4) compact exponential
FD scheme for the 2D convective diffusion model problem (31) with variable convection coefficients is given
by
�~AD2
h � ~BD2

k þ Cf Dh þ Df Dk þ ~EDhDk þ ~GD2
kDh þ ~HD2

hDk þ ~KD2
kD2

h

� �
uij ¼ ~F ij ð49Þ
where
~A ¼
Cf h

2
coth

Cf h
2Af

� �
; Cf 6¼ 0;

Af ; Cf ¼ 0;

(
~B ¼

Df k
2

coth
Df k
2Bf

� �
; Df 6¼ 0

Bf ; Df ¼ 0

(

~c1 ¼
Af�~A

Cf
; Cf 6¼ 0;

0; Cf ¼ 0;

(
~c2 ¼

Af ðAf�~AÞ
C2

f
þ h2

6
; Cf 6¼ 0

h2

12
; Cf ¼ 0

8<
:

~d1 ¼
Bf�~B

Df
; Df 6¼ 0;

0; Df ¼ 0;

(
~d2 ¼

Bf ðBf�~BÞ
D2

f
þ k2

6
; Df 6¼ 0

k2

12
; Df ¼ 0

8<
:

~E ¼ ~c1Df þ ~d1Cf þ 2ð�c2dxij þ �d2cyijÞ
~G ¼ ~d2Cf � ~c1Bf ; ~H ¼ ~c2Df � ~d1Af ; ~K ¼ �~c2Bf � ~d2Af

~F ¼ f þ ~c1fx þ ~c2fxx þ ~d1fy þ ~d2fyy

ð50Þ
and �c2, �d2 and Af, Bf, Cf, Df are given by (45) and (48), respectively. In (50), Af, Bf, Cf and Df were written in
short for Afij, Bfij, Cfij and Dfij.

Scheme (49) with (50) is an O(h4 + k4) compact exponential FD scheme for the 2D model convective dif-
fusion equation (31) on the nine-point 2D stencil. In Section 5, we shall present the numerical results that ver-
ify this inference.

The O(h4 + k4) compact exponential FD scheme (49) applied to Eq. (31) is equivalent to the standard cen-
tral difference approximations applied to the following partial differential equation:
�~Auxx � ~Buyy þ Cf ux þ Df uy ¼ ~F � ~Euxy � ~Guxyy � ~Huxxy � ~Kuxxyy ð51Þ

Thus when the O(h4 + k4) FD scheme (49) is used, Eq. (31) is artificially perturbed to Eq. (51). Artificial dif-

fusion coefficients a Cf h
2a cothðCf h

2Af
Þ � 1

h i
and b Df k

2b cothðDf k
2Bf
Þ � 1

h i
, artificial convection coefficients �c1cx þ �c2cxxþ

�d1cy þ �d2cyy and �c1dx þ �c2dxx þ �d1dy þ �d2dyy , and an artificial source term ~c1fx þ ~c2fxx þ ~d1fy þ ~d2fyy � ~Euxy �
~Guxyy � ~Huxxy � ~Kuxxyy have been added. Here, �c1; �c2; �d1; �d2; ~c1; ~c2; ~d1; ~d2; ~A; ~B, Cf, Df, ~E; ~G; ~H ; ~K and
~F are as defined earlier.

Notice that Eqs. (43) and (51) are the same as Eq. (31) in form. Any efficient iterative method, such as
ADI, splitting, SOR etc., used to solve Eq. (31) can also be easily applied to the fourth order Eqs. (43) and
(51). Moreover, any existing code that solve the convection diffusion equation (31) with second order accu-
racy can be altered to provide fourth order accurate solutions just by adding some coefficients into the code.
We also note that the resulting second order approximation for the left-hand side of Eq. (43) or (51) pro-
duce diagonally dominant matrix. Therefore, the line iterative or line iterative successive overrelaxtion
(LSOR) approach with an alternating direction implicit (ADI) procedure enables us to obtain the solutions
of the problems by application of the one-dimensional tridiagonal Thomas algorithm with a considerable
saving in computing time.
4. Application to 2D incompressible Navier–Stokes equations

In this section, the proposed 4OC exponential FD formulation for the 2D convection–diffusion equation in
Section 3 is used as the basis of a discretization method for the 2D incompressible Navier–Stokes equations
using the stream function-vorticity (w � x) formulation, given by
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� wxx � wyy ¼ x ð52Þ
� xxx � xyy þ ReUxx þ ReV xy ¼ 0 ð53Þ
U ¼ wy ; V ¼ �wx ð54Þ
where U and V are the velocities and Re is the nondimensional Reynolds number.
The stream function (52) is a Poisson equation, and the 4OC approximation can be given with u = w, f = x

and c = d = 0 in Eqs. (41) and (42). This 4OC FD scheme is
� D2
h þ D2

k þ
h2

12
þ k2

12

� �
D2

kD2
h

	 

wij ¼ 1þ h2

12
D2

h þ
k2

12
D2

k

� �
xij ð55Þ
The velocity U at a grid point (xi,yj) can easily be calculated in the following way (also see [15] if k = h):
U ij ¼ wyij ¼ Dkw�
k2

6
wyyy

� �
ij

þOðk4Þ
and using Eq. (52),
U ij ¼ Dkwij þ
k2

6
xy þ wxxy

� �
ij
þOðk4Þ ¼ Dkwij þ

k2

6
Dkxþ D2

hDkw
� �

ij
þOðk4 þ h2k2Þ ð56Þ
Likewise for the y component of velocity V at a grid point (xi,yj)
V ij ¼ �Dhwij �
h2

6
Dhxþ DhD2

kw
� �

ij
þOðh4 þ h2k2Þ ð57Þ
The vorticity equation (53) is a special case of the 2D convection diffusion equation (31), and the 4OC
approximation in this case may be obtained with u = x, f = 0, and a = b = 1, c = ReU, d = ReV in Eqs.
(45) and (48)–(50). According to Eqs. (48) and (50), the value of coefficients has to do with U, Ux, Uy, Uxx,
Uyy, V, Vx, Vy, Vxx and Vyy, where Ux = wxy, Uy = wyy, Uxx = wxxy, Vx = � wxx, Vy = � wxy and Vyy = � w-

xyy can be approximated by the standard second-order central FD formulae. For a fully 4OC exponential FD
scheme for (53), we need to approximate Uyy = wyyy and Vxx = � wxxx with O(h2 + k2) accuracy on compact
stencil, which is done as follows:
ðU yyÞij ¼ ðwyyyÞij ¼ �ðxy þ wxxyÞij ¼ � Dkxþ D2
hDkw

� �
ij
þOðh2 þ k2Þ ð58Þ
and
ðV xxÞij ¼ �ðwxxxÞij ¼ ðxx þ wxyyÞij ¼ Dhxþ DhD2
kw

� �
ij
þOðh2 þ k2Þ ð59Þ
In Section 5, the newly proposed discretization method for the stream function-vorticity formulation of Na-
vier–Stokes equations for incompressible viscous flow will be applied to obtain the numerical solutions of the
lid driven cavity flow problem.
5. Numerical experiments

In this section, we perform numerical experiments to illustrate the accuracy, effectiveness and convergence
of the HOC exponential FD schemes developed in this article. The numerical results of four linear and non-
linear problems, involving boundary layer problems, elliptic singular perturbation problems and the lid driven
cavity flow problem, are given. For linear 1D problems, diagonally dominant tri-diagonal system of equations
are directly solved and for nonlinear 1D problems, a line iterative or line iterative successive overrelaxtion
(LSOR) procedure is associated with the solution of diagonally dominant tri-diagonal system of equations.
For 2D problems, the line iterative or LSOR approach with an alternating direction implicit (ADI) procedure,
which enables us to deal with only diagonally dominant tri-diagonal system of equations, is used to obtain the
solutions of test problems. Comparisons are made between analytical solutions and numerical results for the
currently proposed HOC exponential FD methods, as well as some previously published HOC methods. All
computations are run on an SONY PCG-V505MCP computer using double precision arithmetic.
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The iterative procedure is started with zero initial data and is terminated when Maxjumþ1
i � um

i j 6 10�12 for
one-dimensional problems and Maxjumþ1

ij � um
ij j 6 d for two-dimensional problems, where m is the iterative

count.
The rate of convergence of each method is computed with the following definition:
rate ¼ � logðEh=Eh=2Þ
logð2Þ ð60Þ
where Eh and Eh/2 are the absolute errors with the grids sizes h and h/2, respectively.

5.1. Problem 1

Consider the following differential equation in the presence of source term:
� euxx þ
1

1þ x
ux ¼ f ðxÞ; 0 < x < 1 ð61Þ

uð0Þ ¼ 1þ 2�1=e; uð1Þ ¼ eþ 2 ð62Þ
where f(x) is given such that the exact solution is
uðxÞ ¼ ex þ 2�1=eð1þ xÞ1þ1=e ð63Þ

This problem, which has a steep boundary layer at x = 1, is solved with the 4OC polynomial FD scheme

[4,9,34], the perturbational 4OC exponential FD scheme proposed by Chen et al. [3], the 4OC exponential FD
scheme proposed by Radhakrishna Pillai [27] and the present 4OC exponential FD scheme (20) for e = 10�3

and 10�5.
Solution evolutions are shown in Figs. 1 and 2 with number of nodes Nnode. Notice that results com-

puted by the present 4OC exponential FD method are in full agreement with exact results for all e. For
e = 10�3 and 10�5, the present 4OC exponential FD method produces highly accurate monotone solutions
on a 121-node discretization of the solution domain. For the modest value of e = 10�3, numerical solutions
of the 4OC exponential FD schemes proposed by Radhakrishna Pillai [27] occur nonphysical oscillation and
the results computed by the 4OC polynomial FD scheme [4,9,34] and Chen’s perturbational 4OC exponen-
tial FD scheme [3] are not accurate on coarse mesh. Fig. 1 shows that 121 nodes are needed for the 4OC
exponential FD scheme proposed by Radhakrishna Pillai [27] and the fourth-order compact polynomial FD
scheme [4,9,34] to produce a acceptable solution. Note also that the results of Chen’s perturbational h4

exponential FD scheme [3] are not yet accurate for Nnode = 221. For the small value of e = 10�5, Rad-
hakrishna Pillai’s 4OC exponential FD method occur nonphysical oscillations for Nnode = 221 and at least
721 nodes are needed to produce a accurate nonoscillatory solution. The 4OC polynomial FD approxima-
tion, owing to overdiffusion, need a very fine mesh to accurately resolve solution gradients for convection
dominated problems. It is seen from Fig. 2 that a twentyfold mesh refinement (Nnode = 3601) would be
required for the 4OC polynomial FD method to produce comparable results, which only need 121-node
for the present 4OC exponential FD scheme. Note that Chen’s perturbational h4 compact exponential
FD scheme [3] are inaccurate for Nnode = 12,001 and at least 36,001 nodes are needed to produce a com-
parable solution.
5.2. Problem 2

Consider the following nonlinear differential equation, which has exact solution, in the absence of source
term:
�euxx þ uux ¼ 0; �1 < x < 1 ð64Þ

for which the analytical solution is
uðxÞ ¼ � tanh
x
2e

� �
ð65Þ



Fig. 1. 1D variable coefficient problem with nonzero source term at e = 10�3, solution dependence on Nnode. Computed solutions by the
present 4OC exponential method, the 4OC polynomial method, the Radhakrishna Pillai’s 4OC exponential method and the Chen’s 4OC
exponential method, Problem 1.
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ig. 2. 1D variable coefficient problem with nonzero source term at e = 10�5, solution dependence on Nnode. Computed solutions by the
resent 4OC exponential method, the 4OC polynomial method, the Radhakrishna Pillai’s 4OC exponential method and the Chen’s 4OC
xponential method, Problem 1.
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The model problem (64) is the well-known steady Burgers equation originated from fluid flow research. In
convection dominated cases with large values of the Reynolds number Re = 1/e, the solution contains an
abrupt change centred at the point x = 0, thus to model the nonlinear effects, such as the viscous boundary
layer and shock wave, of fluid flow.

The calculations were carried out for e = 0.1 using the 4OC polynomial FD scheme [34,4,9], the perturba-
tional 4OC exponential FD scheme proposed by Chen et al. [3], the 4OC exponential FD scheme proposed by
Radhakrishna Pillai [27] and the present 4OC exponential scheme (20). The approximation solutions at
x = �0.30, absolute errors of these methods were given in Table 1. When compared to the exact solution
u(�0.30) = 0.90514825 for e = 0.1, the four O(h4) compact FD methods evidence superior performance. We
also see that monotone and accurate results are obtained on a relatively coarse mesh. In addition, the conver-
gence rates were computed by using (60). These values, which are also listed in Table 1, are approximately 4,
confirming the O(h4) accuracy of these schemes.

In Fig. 3, solution evolutions for Re(=1/e) = 103 are shown with number of nodes Nnode. Notice that the
present 4OC exponential FD method produces highly accurate monotone solutions on a 121-node discretiza-
tion of the solution domain. For the modest value of e = 10�3, numerical solution of the perturbational 4OC
exponential FD scheme proposed by Chen et al. [3] is divergent on coarse mesh (Nnode = 21). Fig. 3 depicts
that Chen’s perturbational 4OC exponential FD scheme emerges inrealistic results for Nnode = 61 and Rad-
hakrishna Pillai’s 4OC exponential FD method occur nonphysical oscillations for Nnode = 221 and at least
421 nodes are needed to produce a nonoscillatory solution. The 4OC polynomial FD approximation, owing
to overdiffusion, need a very fine mesh to accurately resolve solution gradients for convection dominated
problems.

5.3. Problem 3

Consider the following differential equation in the presence of source term:
Table
Burger

Nnode

(a) Pr

21
41
81

(b) Ch

21
41
81

(c) Ra

21
41
81

(d) 4O

21
41
81

Exact
�eðuxx þ uyyÞ þ
1

1þ y
uy ¼ f ðx; yÞ; 0 6 x 6 1; 0 6 y 6 1 ð66Þ
with a Dirichlet boundary condition, where f is determined such that the analytic solution is
uðx; yÞ ¼ ey�x þ 2�1=eð1þ yÞ1þ1=e ð67Þ
1
’s equation with exact solution, e = 0.1, Problem 2

u(x = � 0.3) E Rate

esent 4OC exponential method

0.90511805 0.30209 · 10�4 –
0.90514674 0.15418 · 10�5 4.292
0.90514816 0.90440 · 10�7 4.092

en’s 4OC exponential method [3]
0.90497145 0.17680 · 10�3 –
0.90513703 0.11227 · 10�4 3.977
0.90514755 0.70455 · 10�6 3.994

dhakrishna Pillai’s 4OC exponential method [27]
0.90495837 0.18988 · 10�3 –
0.90513600 0.12257 · 10�4 3.953
0.90514748 0.77169 · 10�6 3.989

C polynomial method [4,9,34]
0.90474443 0.40382 · 10�3 –
0.90512312 0.25129 · 10�4 4.006
0.90514669 0.15678 · 10�5 4.003

solution 0.90514825



Fig. 3. 1D Burger’s equation with an exact solution at e = 10�3, solution dependence on Nnode. Computed solutions by the present 4OC
exponential method, the 4OC polynomial method, the Chen’s 4OC exponential method and the Radhakrishna Pillai’s 4OC exponential
method, Problem 2.
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Table 2
Maximum absolute errors and the convergence rate, Problem 3

Nnode 4OC Polynomial method [4,9,34] Chen 4OC method [3] Pillai 4OC method [27] Present 4OC method (49)

e = 1
21 · 21 0.11373(�07) 0.93680(�08) 0.11691(�07) 0.48972(�08)
41 · 41 0.71389(�09) 0.72035(�09) 0.73356(�09) 0.30815(�09)
81 · 81 0.45998(�10) 0.41478(�10) 0.47314(�10) 0.20296(�10)
Rate 3.956 4.118 3.951 3.924

e = 0.1
21 · 21 0.45349(�05) 0.25531(�05) 0.23105(�05) 0.17465(�05)
41 · 41 0.28267(�06) 0.16005(�06) 0.14413(�06) 0.10925(�06)
81 · 81 0.17657(�07) 0.10011(�07) 0.90105(�08) 0.68333(�08)
Rate 4.001 3.999 4.000 3.999

e = 0.01
21 · 21 0.33525(�01) 0.38620(�01) 0.24188(�02) 0.80604(�03)
41 · 41 0.28265(�02) 0.34746(�02) 0.17848(�03) 0.97768(�04)
81 · 81 0.16486(�03) 0.24211(�03) 0.11867(�04) 0.62914(�05)
Rate 4.100 3.843 3.911 3.958

Note: 0.11373(�07) = 0.11373 · 10�7, etc.
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This problem has a vertical boundary layer along y = 1. The calculations were carried out for d = 10�14 using
the current 4OC exponential FD scheme (49), the 4OC polynomial FD scheme developed by different authors
in [5,9,17,34], the perturbational 4OC exponential FD scheme proposed by Chen et al. [3] and the 4OC expo-
nential FD scheme proposed by Radhakrishna Pillai [27]. Maximum absolute errors are given in Table 2. No-
tice that the approximate solution from the present 4OC exponential FD method is more accurate than that
from other 4OC exponential FD methods [3,27] and the 4OC polynomial FD method [5,17,9,34]. The esti-
mated accuracy orders of the corresponding schemes with h = 1/40 and h = 1/80, which are computed by
using (60), are also listed in Table 2. It can be seen that these HOC schemes attained their theoretical accuracy
orders.

In Fig. 4, solution evolutions for e = 10�4 are shown with number of nodes Nnode. Notice that solution
computed by the present 4OC exponential FD scheme (49) is in excellent agreement with exact results. The
present 4OC exponential FD method produces highly accurate monotone solutions. Fig. 4 shows that the
numerical solution of the 4OC exponential FD schemes proposed by Radhakrishna Pillai [27] occur nonphys-
ical oscillation and the results computed by the 4OC polynomial FD scheme [5,9,17,34] and Chen’s perturba-
tional 4OC exponential FD scheme [3] are not accurate on coarse mesh.

5.4. Problem 4

Consider the two-dimensional lid-driven cavity flow problem, which is extensively used as a benchmark for
code validation of the incompressible Navier–Stokes equations. The cavity is defined in the square [0,1] · [0,1]
and the governing equations are given by the stream function-vorticity formulation of the Navier–Stokes
equations (52)–(54).

The flow is induced by the sliding motion of the top wall (y = 1) from left to right. The boundary conditions
are those of no slip: on the top wall U = 1 and V = 0, on all other walls U = 0 and V = 0, as shown in Fig. 5.
Further the stream function values on all four walls are zero (w = 0). In Fig. 5, the abbreviations BL, BR and
TL refer to bottom left, bottom right and top left corners of the cavity, respectively.

The numerical boundary vorticity can be used by
h
21
ð6xw þ 4x1 � x2Þ þOðh4Þ ¼ 1

14h
ð15ww � 16w1 þ w2Þ � V w ð68Þ
given by Spotz [31], where Vw is the tangential wall velocity, 1 and 2 denote the first two neighbouring internal
points on normal through the boundary w. For the driven cavity problem, Vw = 0 except on the moving lid,
where +Vw = U = 1.



Fig. 4. Solution surface plots on 21·21, ate= 10 �4: exact (a), numerical (b) (pmethod), (d) (Chen’s 4OC exponential method) and (e) (Radhakrishna Pillai’s 4OC exponential method), Problem 3.Z.F. Tian, S.Q. Dai / Journal of Computational Physics 220 (2007) 952–974969
The iterative procedure is repeated until the maximum difference between successive approximations of
both w and x are smaller than 10�5.

Fig. 6 shows the stream function and vortcity contours obtained through the present method for Re = 3200
and 5000 on a 129 · 129 grid. This graph depicts the typical separations and secondary vortices BR and BL at
a

b c

d e

resent 4OC exponential method), (c) (4OC polynomial



Primary Vortex

BRBL

TL

U=1, V=0

U
=

0
,

V
=

0U
=

0,
V

=
0
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Fig. 6. Contours of streamfunction (left) and vorticity (right) with 129 · 129, Problem 4.
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the bottom corners of the cavity as well as TL at the top left of the square cavity. In Fig. 6, the evolution of
tertiary vortices in the bottom corners of the cavity are also observed. The tertiary vortices become visible for
Re = 3200 and gain a significant size for Re = 5000.

The location coordinates of the centre of primary and secondary vortices and the corresponding stream
function and/or vorticity values at the centre of these vortices are summarized in Table 3 for Re = 1000,
2000, 3200 and 5000. The available comparison data from the literature are also given in these tables. In
each case our results exhibit an excellent match with the best and most accurate solutions available in
the literature.
6. Concluding remarks

In this article, we have developed HOC exponential, referred to as EHOC, FD methods for the solution
of one- and two-dimensional convection–diffusion equations with constant and variable convection coeffi-
cients. A distinguishing desirable property of the developed method is solution matrix bandwidth, which
always remains equal to that of the second-order discretizations. For the 1D convection–diffusion model
problems, the difference equations are proposed on the three-point 1D stencil, which result in diagonally
dominant tri-diagonal systems. For the 2D case, the EHOC schemes on the nine-point 2D stencil are
derived. The simple line iterative or line iterative SOR technique with an alternating direction implicit
(ADI) procedure enables one to deal with only diagonally dominant tri-diagonal systems which can be
solved by application of the one-dimensional tridiagonal Thomas algorithm with a considerable saving in
computing time. This permits combining the computational efficiency of the lower order methods with supe-
rior accuracy inherent in high order approximations. As the basis of a discretization method for the incom-
pressible, 2D, steady-state flow problems, the 4OC exponential FD formulation proposed for the 2D
convection–diffusion equation has been extended to the stream function-vorticity formulation of the
Navier–Stokes equations. The present method is easily extendible to three-dimensional convection–diffusion
type problems.

Numerical experiments are performed to demonstrate their high accuracy and efficiency and to show their
superiority over the HOC polynomial FD scheme [4,5,9,17,34], the perturbational 4OC exponential FD
scheme proposed by Chen et al. [3] and the 4OC exponential FD scheme proposed by Radhakrishna Pillai
[27], in terms of resolution of solution gradients. The robustness of the present EHOC methods is illustrated
by their applicability to the wide range problems including linear and nonlinear problems, mostly with small
second derivative terms, in particular, fluid flow problems with boundary or internal layers. The computa-
tional results show that, besides including the excellent performances of the HOC polynomial method in com-
putational accuracy, efficiency and stability, the present EHOC method has the advantage of better scale
resolution with smaller number of gird nodes.

The theoretical analysis and experiments studies of the convergence and performance of iterative methods
with HOC schemes should be beneficial. The convergence and performance of iterative methods with HOC
polynomial schemes have been studied in [18,38,39]. The convergence and performance of iterative methods
with EHOC schemes have not yet to be investigated. This is the subject of the future.

Finally, we mention that the usage of nonuniform mesh becomes an essential aspect for dealing with con-
vection-dominated problems [12,13]. However, the present EHOC schemes are all based on the uniform mesh-
size discretization. We are currently working to develop an EHOC FD method that is suitable for both
uniform and nonuniform grids.
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Appendix 1

This appendix present some useful definitions and theorems [25,35].

Definition 1. A real n · n matrix A = (aij) is said to be irreducibly diagonally dominant if jaiijP
Pn

j¼1
j 6¼i
jaijj for

all 0 6 i 6 n, and the strict inequality holds for at least one i.

Definition 2. A real n · n matrix A = (aij) with aij 6 0 for i 6¼ j and aii > 0 for 1 6 i 6 n is an M-matrix if A is
nonsingular and its inverse has no negative entries (or A�1 P 0).

Theorem 1. If A = (aij) is a real, strictly or irreducible diagonally dominant n · n matrix with aij 6 0 for i 6¼ j and

aii > 0 for 1 6 i 6 n, then A is invertible and A�1 > 0, which means that A is an M-matrix.

Definition 3. A real n · n matrix A = (aij) is defined to be monotone if A/ P 0 holds for any vector /, it
implies / P 0.

Theorem 2. If the off-diagonal entries of A are nonpositive, we are led to a monotone A if and only if A is an
M-matrix.
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[11] E. Erturk, C. Gökçöl, Fourth-order compact formulation of Navier–Stokes equations and driven cavity flow at high Reynolds

numbers, Int. J. Numer. Meth. Fluids 50 (2006) 421–436.
[12] L. Ge, J. Zhang, Accuracy robustness and efficiency comparison in iterative computation of convection diffusion equation with

boundary layers, Numer. Methods Partial Differential Eqn. 16 (2000) 379–394.
[13] L. Ge, J. Zhang, High accuracy iterative solution of convection diffusion equation with boundary layers on nonuniform grids, J.

Comput. Phys. 171 (2001) 560–578.
[14] U. Ghia, K.N. Ghia, C.T. Shin, High Re-solution for incompressible Navier–Stokes equation and a multigrid method, J. Comput.

Phys. 48 (1982) 387–411.
[15] M.M. Gupta, High-order solution on incompressible Navier–Stokes equations, J. Comput. Phys. 93 (1991) 343–359.
[16] M.M. Gupta, J.C. Kalita, A new paradigm for solving Navier–Stokes equations: streamfunction-velocity formulation, J. Comput.

Phys. 207 (2005) 52–68.
[17] M.M. Gupta, R.P. Manohar, J.W. Stephenson, A single cell high order scheme for the convection–diffusion equation with variable

coefficients, Int. J. Numer. Meth. Fluids 4 (1984) 641–651.
[18] S. Karaa, J. Zhang, Convergence and performance of iterative methods for solving variable coefficient convection–diffusion equation

with a fourth-order compact difference scheme, Comput. Math. Appl. 44 (2002) 457–479.
[19] A. Kolesnikov, A.J. Baker, An efficient high-order Taylor weak statement formulation for the Navier–Stokes equations, J. Comput.

Phys. 173 (2001) 549–574.
[20] A. Kolesnikov, A.J. Baker, Efficent implementation of high order methods for the advection-diffusion equation, Comput. Methods

Appl. Mech. Engrg. 189 (2000) 701–722.
[21] S.H. Leventhal, An operator compact implicit method of exponential type, J. Comput. Phys. 46 (1981) 138–165.
[22] M. Li, T. Tang, B. Fornberg, A compact fourth-order finite difference scheme for the incompressible Navier–Stokes equations, Int. J.

Numer. Meth. Fluids 20 (1995) 1137–1151.



974 Z.F. Tian, S.Q. Dai / Journal of Computational Physics 220 (2007) 952–974
[23] Q.L. Li, On efficient and stable finite difference schemes for the convection–diffusion problems, Master’s thesis, Ningxia University,
China, April 2000 (in Chinese).

[24] R.J. MacKinnon, R.W. Johnson, Differential equation based representation of truncation errors for accurate numerical simulation,
Int. J. Numer. Meth. Fluids 13 (1991) 739–757.

[25] T. Meis, U. Marcowitz, Numerical Solution of Partial Differential EquationsApplied Mathematical Science Series, vol. 22, Springer-
Verlag, Berlin/New York, 1981.

[26] S.V. Patanker, Numerical Heat Transfer and Fluid Flow, McGraw-Hill, New York, 1980.
[27] A.C. Radhakrishna Pillai, Fourth-order exponential finite difference methods for boundary value problems of convective diffusion

type, Int. J. Numer. Meth. Fluids 37 (2001) 87–106.
[28] P.J. Roache, Computational fluid dynamics, Hermosa, Albuquerque, NM, 1976.
[29] D.F. Roscoe, New methods for the derivation of stable difference representations for differential equations, J. Inst. Math. Appl. 16

(1975) 291–301.
[30] A. Segal, Aspects of numerical methods for elliptic singular perturbation problems, SIAM J. Sci. Statist. Comput. 3 (1982) 327–349.
[31] W.F. Spotz, Accuracy and performance of numerical wall boundary conditions for steady, 2D, incompressible streamfunction

vorticity, Int. J. Numer. Meth. Fluids 28 (1998) 737–757.
[32] W.F. Spotz, G.F. Carey, High-order compact scheme for the steady stream-function vorticity equations, Int. J. Numer. Meth. Engrg.

38 (1995) 3497–3512.
[33] Z.F. Tian, Y.B. Ge, A fourth-order compact finite difference scheme for the steady streamfunction-vorticity formulation of the

Navier–Stokes/Boussinesq equations, Int. J. Numer. Meth. Fluids 41 (2003) 495–518.
[34] Z.F. Tian, J. Cui, A new method of constructing fourth-order compact scheme for the steady convection–diffusion equation, in: F.G.

Zhuang (Ed.), Proceeding 7th International Symposium on Computational Fluid Dynamics, International Academic Publishers,
Beijing, China, 1997, pp. 116–121.

[35] R.S. Varga, Matrix Iterative Analysis, Prentice-Hall, Englewood Cliffs, NJ, 1962.
[36] R.F. Warming, B.J. Hyett, The modified equation approach to the stability and accuracy analysis of finite difference methods, J.

Comput. Phys. 14 (1974) 159–179.
[37] I. Yavneh, Analysis of a fourth-order compact scheme for convection–diffusion, J. Comput. Phys. 133 (1997) 361–364.
[38] J. Zhang, Accurated high accuracy multigrid solution of the convection–diffusion with high Reynolds number, Numer. Methods

Partial Differential Eqn. 13 (1997) 77–92.
[39] J. Zhang, On convergence and performance of iterative methods with fourth-order compact schemes, Numer. Methods Partial

Differential Eqn. 14 (1998) 263–280.
[40] J. Zhang, Preconditioned iterative methods and finite difference schemes for convection–diffusion, Appl. Math. Comput. 109 (2000)

11–30.


	High-order compact exponential finite difference methods for convection-diffusion type problems
	Introduction
	High-order compact exponential FD methods: 1D case
	O(h4) compact exponential FD method: constant coefficient case
	O(h4) compact exponential FD method: variable coefficient case
	O(h4) compact exponential FD schemes: monotonicity and comparison

	Extension to two-dimensions case
	O(h4+k4) compact exponential FD method: constant coefficients case
	O(h4+k4) compact exponential FD method: variable coefficients case

	Application to 2D incompressible Navier-Stokes equations
	Numerical experiments
	Problem 1
	Problem 2
	Problem 3
	Problem 4

	Concluding remarks
	Acknowledgements
	Appendix 1
	References


